A Comparative Analysis on the Summarization of Legal Texts Using Transformer Models

Daniel Núñez-Robinson, Jose Talavera-Montalto, Willy Ugarte

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

4 Citas (Scopus)

Resumen

Transformer models have evolved natural language processing tasks in machine learning and set a new standard for the state of the art. Thanks to the self-attention component, these models have achieved significant improvements in text generation tasks (such as extractive and abstractive text summarization). However, research works involving text summarization and the legal domain are still in their infancy, and as such, benchmarks and a comparative analysis of these state of the art models is important for the future of text summarization of this highly specialized task. In order to contribute to these research works, the researchers propose a comparative analysis of different, fine-tuned Transformer models and datasets in order to provide a better understanding of the task at hand and the challenges ahead. The results show that Transformer models have improved upon the text summarization task, however, consistent and generalized learning is a challenge that still exists when training the models with large text dimensions. Finally, after analyzing the correlation between objective results and human opinion, the team concludes that the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [13] metrics used in the current state of the art are limited and do not reflect the precise quality of a generated summary.

Idioma originalInglés
Título de la publicación alojadaAdvanced Research in Technologies, Information, Innovation and Sustainability - Second International Conference, ARTIIS 2022, Revised Selected Papers
EditoresTeresa Guarda, Filipe Portela, Maria Fernanda Augusto
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas372-386
Número de páginas15
ISBN (versión impresa)9783031203183
DOI
EstadoPublicada - 2022
Evento2nd International Conference on Advanced Research in Technologies, Information, Innovation and Sustainability, ARTIIS 2022 - Santiago de Compostela, Espana
Duración: 12 set. 202215 set. 2022

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1675 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia2nd International Conference on Advanced Research in Technologies, Information, Innovation and Sustainability, ARTIIS 2022
País/TerritorioEspana
CiudadSantiago de Compostela
Período12/09/2215/09/22

Huella

Profundice en los temas de investigación de 'A Comparative Analysis on the Summarization of Legal Texts Using Transformer Models'. En conjunto forman una huella única.

Citar esto