A Comparative Study of Deep Learning Techniques Aimed at Detection of Arrhythmias from ECG Signals

John Gómez, Alberto Quispe, Guillermo Kemper

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

This article presents a comparative study of the performance of Deep Learning techniques (LSTM, Dense, and CNN) applied to the detection and classification of arrhythmias in an ECG signal. The objective is to obtain the best prediction model for cardiac arrhythmias with each Deep Learning technique and compare their performances. The training was done with the Physionet MIT-BIH database, from which 108854 samples were taken from a total of 48 patients with and without proven arrhythmia. With this information, the three indicated neural networks were trained, and the performance comparison was carried out through the ROC curve. The one-dimensional convolutional neural network (1D-CNN) achieved the best performance. It was used to build an arrhythmia detection algorithm using one hidden convolutional layer and 3600 input samples at a time (10-s signal fragments). The obtained results were very satisfactory, achieving a precision of 92.07% for the 1D-CNN technique, 82.10% for LSTM, and 75% for Dense.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 6th Brazilian Technology Symposium, BTSym 2020 - Emerging Trends and Challenges in Technology
EditoresYuzo Iano, Osamu Saotome, Guillermo Kemper, Ana Claudia Mendes de Seixas, Gabriel Gomes de Oliveira
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas385-395
Número de páginas11
ISBN (versión impresa)9783030756796
DOI
EstadoPublicada - 2021
Evento6th Brazilian Technology Symposium, BTSym 2020 - Virtual, Online
Duración: 26 oct. 202028 oct. 2020

Serie de la publicación

NombreSmart Innovation, Systems and Technologies
Volumen233
ISSN (versión impresa)2190-3018
ISSN (versión digital)2190-3026

Conferencia

Conferencia6th Brazilian Technology Symposium, BTSym 2020
CiudadVirtual, Online
Período26/10/2028/10/20

Huella

Profundice en los temas de investigación de 'A Comparative Study of Deep Learning Techniques Aimed at Detection of Arrhythmias from ECG Signals'. En conjunto forman una huella única.

Citar esto