A design and analysis of an autonomous ground vehicle to automate the process of transplanting rice

Roel Caballero, Ricardo Palma, Leonardo Vinces

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Precision agriculture brought with it the implementation of new digital technologies, mainly autonomous vehicles, satellite images, IoT and artificial intelligence, to provide economic, productive, and environmental benefits in the agricultural field. However, the main applications are focused on data management and monitoring of crop fields, so agricultural processes such as planting and harvesting are not yet fully automated. A clear example of this occurs in the cultivation of rice, which despite being one of the most important agricultural products in the world, the manual production method continues to predominate in developing countries. This work presents a design of an autonomous terrestrial vehicle capable of carrying out the rice transplantation process, having as its main characteristics its ability to move in the field of cultivation at a speed of 0.75m/s, transport a payload of up to 20kg and possess an autonomy of 1 hour. Which translates into an effective field capacity (EFC) of 0.21 ha/h, an operational equivalence of 7 workers/hour and an increase in the productivity of the transplant process of 200% with respect to the manual process. It seeks to provide farmers in developing countries with an affordable option, supported by numerical simulations, with which they can obtain the benefits of precision agriculture in the process of transplanting rice. In such a way, that the manual production of rice and its disadvantages such as low productivity, the physical consequences for the farmers and the limitations against expensive machinery are replaced by the automation proposal.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 21st LACCEI International Multi-Conference for Engineering, Education and Technology
Subtítulo de la publicación alojadaLeadership in Education and Innovation in Engineering in the Framework of Global Transformations: Integration and Alliances for Integral Development, LACCEI 2023
EditoresMaria M. Larrondo Petrie, Jose Texier, Rodolfo Andres Rivas Matta
EditorialLatin American and Caribbean Consortium of Engineering Institutions
ISBN (versión digital)9786289520743
EstadoPublicada - 2023
Evento21st LACCEI International Multi-Conference for Engineering, Education and Technology, LACCEI 2023 - Buenos Aires, Argentina
Duración: 19 jul. 202321 jul. 2023

Serie de la publicación

NombreProceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
Volumen2023-July
ISSN (versión digital)2414-6390

Conferencia

Conferencia21st LACCEI International Multi-Conference for Engineering, Education and Technology, LACCEI 2023
País/TerritorioArgentina
CiudadBuenos Aires
Período19/07/2321/07/23

Huella

Profundice en los temas de investigación de 'A design and analysis of an autonomous ground vehicle to automate the process of transplanting rice'. En conjunto forman una huella única.

Citar esto