A static hand gesture recognition for peruvian sign language using digital image processing and deep learning

Cristian Lazo, Zaid Sanchez, Christian del Carpio

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

5 Citas (Scopus)

Resumen

The work consists in recognizing the gestures of the alphabet in Peruvian sign language using techniques of digital image processing and a model of Deep Learning (CNN). Image processing techniques are used for segmentation and tracking of the hand of the person making the gestures. Once the image of the segmented hand is used, a CNN classification model is used to be able to recognize the gesture. The image processing and CNN algorithms were implemented in the Python programming language. The database used was 23,000 images divided into 70% for training, 15% for testing and 15% for validation. Likewise, said data corresponds to 1000 images for each non-mobile gesture of the alphabet. The results obtained for the precision of the classifier were 99.89, 99.88 and 99.85% for the data of training, test and validation respectively. In the case of the Log Loss parameter, 0.0132, 0.0036, and 0.0107 were obtained for the training, testing and validation data, respectively.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 4th Brazilian Technology Symposium (BTSym’18) - Emerging Trends and Challenges in Technology
EditoresYuzo Iano, Hermes José Loschi, Rangel Arthur, Osamu Saotome, Vânia Vieira Estrela
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas281-290
Número de páginas10
ISBN (versión impresa)9783030160524
DOI
EstadoPublicada - 2019
Publicado de forma externa
Evento4th Brazilian Technology Symposium, BTSym 2018 - Campinas, Brasil
Duración: 23 oct. 201825 oct. 2018

Serie de la publicación

NombreSmart Innovation, Systems and Technologies
Volumen140
ISSN (versión impresa)2190-3018
ISSN (versión digital)2190-3026

Conferencia

Conferencia4th Brazilian Technology Symposium, BTSym 2018
País/TerritorioBrasil
CiudadCampinas
Período23/10/1825/10/18

Huella

Profundice en los temas de investigación de 'A static hand gesture recognition for peruvian sign language using digital image processing and deep learning'. En conjunto forman una huella única.

Citar esto