A Strategy of Potential Fields and Neural Networks in the Control of an Autonomous Vehicle Within Dangerous Environments

Luisa Chávez, Angel Cortez, Leonardo Vinces

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

6 Citas (Scopus)

Resumen

This article focuses on the development of an autonomous navigation system by generating real-time 3D maps of different urban environments with different properties within simulation software. This system used the Pioneer 3-DX vehicle, a LiDAR sensor, GPS, and a gyroscope. For the elaboration of the trajectory, the mathematical tool of artificial potential fields was used, which will generate an attractive field to a dynamic goal identified by the robot and repulsive to the obstacles present in the environment, recognized with great precision thanks to the use of a neural network. The topology neural network 8–16–32 was developed using forward propagation, reverse propagation, and gradient descent algorithms. By combining the tools of potential fields and neural networks, a path was traced through which the robotic system will be able to move freely under an off-center point kinematic control algorithm. Finally, a 3D map of the environment was obtained to provide information on the morphology and most outstanding characteristics of the deployment environment to users who use the system.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 7th Brazilian Technology Symposium, BTSym 2021 - Emerging Trends in Systems Engineering Mathematics and Physical Sciences
EditoresYuzo Iano, Osamu Saotome, Guillermo Leopoldo Kemper Vásquez, Claudia Cotrim Pezzuto, Rangel Arthur, Gabriel Gomes de Oliveira
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas452-460
Número de páginas9
ISBN (versión impresa)9783031085444
DOI
EstadoPublicada - 2022
Evento7th Brazilian Technology Symposium, BTSym 2021 - Virtual, Online
Duración: 8 nov. 202110 nov. 2021

Serie de la publicación

NombreSmart Innovation, Systems and Technologies
Volumen295 SIST
ISSN (versión impresa)2190-3018
ISSN (versión digital)2190-3026

Conferencia

Conferencia7th Brazilian Technology Symposium, BTSym 2021
CiudadVirtual, Online
Período8/11/2110/11/21

Huella

Profundice en los temas de investigación de 'A Strategy of Potential Fields and Neural Networks in the Control of an Autonomous Vehicle Within Dangerous Environments'. En conjunto forman una huella única.

Citar esto