An Algorithm Oriented to the Classification of Quinoa Grains by Color from Digital Images

Moisés Quispe, José Arroyo, Guillermo Kemper, Jonell Soto

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

The present work proposes an image processing algorithm oriented to identify the coloration of the quinoa grains that make up the different samples obtained from the production of a crop field. The objective is to perform quality control of production based on the statistics of grain coloration, which is currently done manually based on subjective visual perception. This generates results that totally depend on the abilities and the particular criteria of each observer, generating considerable errors in the identification of the colors and tonalities. The problem is further complicated by the nonexistence, at present, of a pattern or standard of coloration of quinoa grains that specifically defines a referential color map. In this sense, through this work, an algorithm is proposed oriented to classify the grains of the acquired samples by their color via digital images and provide corresponding statistics for the quality control of the production. The algorithm uses the color models RGB, HSV and YCbCr, thresholding, segmentation by binary masks, erosion, connectivity, labeling and sequential classification based on 8 colors established by agronomists. The obtained results showed a performance of the proposed algorithm of 91.25% in relation to the average success rate.

Idioma originalInglés
Título de la publicación alojadaAdvances in Emerging Trends and Technologies Volume 1
EditoresMiguel Botto-Tobar, Joffre León-Acurio, Angela Díaz Cadena, Práxedes Montiel Díaz
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas237-247
Número de páginas11
ISBN (versión impresa)9783030320218
DOI
EstadoPublicada - 2020
Evento1st International Conference on Advances in Emerging Trends and Technologies, ICAETT 2019 - quito, Ecuador
Duración: 29 may. 201931 may. 2019

Serie de la publicación

NombreAdvances in Intelligent Systems and Computing
Volumen1066
ISSN (versión impresa)2194-5357
ISSN (versión digital)2194-5365

Conferencia

Conferencia1st International Conference on Advances in Emerging Trends and Technologies, ICAETT 2019
País/TerritorioEcuador
Ciudadquito
Período29/05/1931/05/19

Huella

Profundice en los temas de investigación de 'An Algorithm Oriented to the Classification of Quinoa Grains by Color from Digital Images'. En conjunto forman una huella única.

Citar esto