An algorithm to obtain the QRS score based on ECG parameters detection and neural networks for confounder classification

Julio Cabanillas, Gustavo Tello, Brandon Mercado, Guillermo Kemper, Mirko Zimic, Robert Gilman

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

The present work proposes an algorithm to calculate the QRS Score and the determination of confounders starting from Electrocardiographic (ECG) signals. The QRS Score is a parameter that indicates how big the scar is in the wall of the patient’s myocardium; It is also helpful in determining how healthy the heart is. Said parameter is calculated from signal information such as time measurements, amplitude relationships and waveforms. The evaluation of the ECG signals is usually done by visual perception of the graph paper where it is printed as a result of the electrocardiogram examination. However, the reproducibility of this method is 60% and the repeatability is 66%. This definitely affects the accuracy of the score obtained and therefore the diagnosis of a disease. The proposed algorithm aims to reduce the subjectivity of the analysis and standardize the punctuations to be obtained. The algorithm is made up of processing stages that involve the conditioning of the signal using finite impulse response (FIR) filters, decontamination of confounders by neural networks, detection of the QRS complex, detection of times and amplitudes and finally obtaining the QRS score from a table of criteria. Finally, the proposed algorithm obtained a reproducibility of 75% and a repeatability of 100% exceeding the performance of the specialist.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 4th Brazilian Technology Symposium (BTSym’18) - Emerging Trends and Challenges in Technology
EditoresYuzo Iano, Hermes José Loschi, Rangel Arthur, Osamu Saotome, Vânia Vieira Estrela
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas201-211
Número de páginas11
ISBN (versión impresa)9783030160524
DOI
EstadoPublicada - 2019
Evento4th Brazilian Technology Symposium, BTSym 2018 - Campinas, Brasil
Duración: 23 oct. 201825 oct. 2018

Serie de la publicación

NombreSmart Innovation, Systems and Technologies
Volumen140
ISSN (versión impresa)2190-3018
ISSN (versión digital)2190-3026

Conferencia

Conferencia4th Brazilian Technology Symposium, BTSym 2018
País/TerritorioBrasil
CiudadCampinas
Período23/10/1825/10/18

Huella

Profundice en los temas de investigación de 'An algorithm to obtain the QRS score based on ECG parameters detection and neural networks for confounder classification'. En conjunto forman una huella única.

Citar esto