TY - GEN
T1 - An Electronic Equipment for Measuring Color Difference Between Tissues Based on Digital Image Processing and Neural Networks
AU - Calderón, José
AU - Lipa, Benghy
AU - Kemper, Guillermo
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2023
Y1 - 2023
N2 - This work proposes an electronic equipment aimed at measuring the color difference between fabrics for a homogeneous selection of these. The proposed method analyzes tissues with different illuminants so that, by taking measurements with a camera, the impact of effects such as metamerism can be reduced, resulting in a more accurate method that represents reality. For this, an enclosure was designed and built to allow constant lighting conditions and spotlights with standard lighting were installed. On the software side, the camera was manually configured to ensure persistent measurements over time and the colors obtained from the RGB color space were converted to CIELAB. For the calculation of the color difference, the Delta E (CMC) color difference equation was used because this is the standard used in the textile industry. Finally, a neural network was trained to estimate the color difference between the fabrics. To validate the results, the measurements obtained with the proposed equipment were compared with those obtained using a colorimeter to measure the colors of the fabrics and calculate whether their color difference is significant. The developed equipment achieved an accuracy of 95% in the correct identification of fabrics that are homogenous in color.
AB - This work proposes an electronic equipment aimed at measuring the color difference between fabrics for a homogeneous selection of these. The proposed method analyzes tissues with different illuminants so that, by taking measurements with a camera, the impact of effects such as metamerism can be reduced, resulting in a more accurate method that represents reality. For this, an enclosure was designed and built to allow constant lighting conditions and spotlights with standard lighting were installed. On the software side, the camera was manually configured to ensure persistent measurements over time and the colors obtained from the RGB color space were converted to CIELAB. For the calculation of the color difference, the Delta E (CMC) color difference equation was used because this is the standard used in the textile industry. Finally, a neural network was trained to estimate the color difference between the fabrics. To validate the results, the measurements obtained with the proposed equipment were compared with those obtained using a colorimeter to measure the colors of the fabrics and calculate whether their color difference is significant. The developed equipment achieved an accuracy of 95% in the correct identification of fabrics that are homogenous in color.
KW - Color difference
KW - Fabric color
KW - Illuminants
KW - Metamerism
KW - Textile image processing
UR - https://www.scopus.com/pages/publications/85148010188
U2 - 10.1007/978-3-031-24985-3_14
DO - 10.1007/978-3-031-24985-3_14
M3 - Contribución a la conferencia
AN - SCOPUS:85148010188
SN - 9783031249846
T3 - Communications in Computer and Information Science
SP - 184
EP - 196
BT - Applied Technologies - 4th International Conference, ICAT 2022, Revised Selected Papers
A2 - Botto-Tobar, Miguel
A2 - Zambrano Vizuete, Marcelo
A2 - Montes León, Sergio
A2 - Torres-Carrión, Pablo
A2 - Durakovic, Benjamin
PB - Springer Science and Business Media Deutschland GmbH
T2 - 4th International Conference on Applied Technologies, ICAT 2022
Y2 - 23 November 2022 through 25 November 2022
ER -