Analysis of Damage in a Warren Truss Bridge Using CAE and DANN Neural Networks

Micaela Pacheco, Oliver Gutierrez, Joan Casas, Rick Delgadillo

Producción científica: Contribución a una revistaArtículo de la conferenciarevisión exhaustiva

Resumen

Bridges require constant monitoring to detect damages. This study analyzes the Japanese Warren truss bridge using neural networks: Convolutional Autoencoder (CAE) and Domain-Adversarial Neural Network (DANN). The methodology focuses on two aspects: reconstruction of bridge acceleration data with CAE and damage analysis with DANN using CAE-processed data. CAE is trained to reconstruct acceleration data by recovering missing data and generating new data to improve dataset quality. Then, DANN uses this data to identify and evaluate anomalies in the bridge structure. The results obtained were 84% accuracy with respect to the synthetic data generated with the CAE network and 95% accuracy and an F1-score of 92% in the damage analysis of the bridge with the DANN network.

Idioma originalInglés
Número de artículo02002
PublicaciónE3S Web of Conferences
Volumen586
DOI
EstadoPublicada - 6 nov. 2024
Publicado de forma externa
Evento2024 International Conference on Structural and Civil Engineering, ICSCE 2024 - Madrid, Espana
Duración: 10 set. 202412 set. 2024

Huella

Profundice en los temas de investigación de 'Analysis of Damage in a Warren Truss Bridge Using CAE and DANN Neural Networks'. En conjunto forman una huella única.

Citar esto