Aplicación del método few shot learning al modelo GPT3.5 para la personalización del contenido de las redes sociales

Brigitte Melody Méndez Pastor, Carolina Milagros Villegas Celis, Alfredo Barrientos Padilla

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

This paper presents an approach based on KDD (Knowledge Discov-ery in Databases) for the development of a web application using the knowledge transfer technique “few shot learning” to the GPT3.5 model. The objective is to generate personalized and high-quality content for business social networks. Data is collected through a logging interface and Excel files containing existing copies and social network interaction metrics. Data preprocessing and transformation techniques are applied to improve the generalizability of the model. The evalua-tion is performed using metrics of similarity, grammaticality, and relevance of the generated content. The results show high scores for precision (0.7177) and recall (0.6890), indicating a substantial similarity between the generated copies and the existing ones. In addition, a grammatical score close to perfection is achieved. Regarding human validation, the results show that users are mostly satisfied with the generated content, which is validated through a survey after the use of the application. These results demonstrate the effectiveness of the proposal in the automated generation of personalized content for business social networks, which can save time and effort for marketers, while improving the quality and consistency of the generated content.

Título traducido de la contribuciónApplying few shot learning to GPT3.5 model for social media content personalization
Idioma originalEspañol
Título de la publicación alojadaCISCI 2024 - Vigesima Tercera Conferencia Iberoamericana en Sistemas, Cibernetica e Informatica, Vigesimo Primer Simposium Iberoamericano en Educacion, Cibernetica e Informatica, SIECI 2024 - Memorias
EditoresNagib C. Callaos, Jesus de la Fuente Arias, Jeremy Horne, Belkis Sanchez, Andres Tremante
EditorialInternational Institute of Informatics and Cybernetics
Páginas8-12
Número de páginas5
Edición2024
ISBN (versión digital)9781950492817
DOI
EstadoPublicada - 2024
EventoVigesima Tercera Conferencia Iberoamericana en Sistemas, Cibernetica e Informatica, CISCI 2024, Vigesimo Primer Simposium Iberoamericano en Educacion, Cibernetica e Informatica, SIECI 2024 - 23rd Ibero-American Conference on Systems, Cybernetics and Informatics, CISCI 2024 and 21st Ibero-American Symposium on Education, Cybernetics and Informatics, SIECI 2024 - Virtual, Online
Duración: 10 set. 202413 set. 2024

Conferencia

ConferenciaVigesima Tercera Conferencia Iberoamericana en Sistemas, Cibernetica e Informatica, CISCI 2024, Vigesimo Primer Simposium Iberoamericano en Educacion, Cibernetica e Informatica, SIECI 2024 - 23rd Ibero-American Conference on Systems, Cybernetics and Informatics, CISCI 2024 and 21st Ibero-American Symposium on Education, Cybernetics and Informatics, SIECI 2024
CiudadVirtual, Online
Período10/09/2413/09/24

Palabras clave

  • businesses
  • copywriting
  • few shot learning
  • gpt
  • openai
  • personalization

Huella

Profundice en los temas de investigación de 'Aplicación del método few shot learning al modelo GPT3.5 para la personalización del contenido de las redes sociales'. En conjunto forman una huella única.

Citar esto