Application of the Deep Learning Methodology for the Detection of Cracks in Asphalt Roads

Luis Antonio Elespuru Neyra, Marco Antonio Llacza Tolentino, Aldo Rafael Bravo Lizano

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Insufficient data availability and suboptimal monitoring systems notably reduced the lifespan of flexible pavements. This study addressed these challenges by introducing an innovative tool to enhance control over pavement conditions. Initial field observations identified various types of cracking, forming the basis for a comprehensive photogrammetric data survey. This dataset was then employed to train a Deep Learning model for object detection. The results showcased the model’s exceptional reliability in identifying pavement cracks, achieving an impressive accuracy rate of 83.33%. The study emphasizes the practical viability of the proposed tool as an effective means of monitoring roadway conditions. By overcoming data limitations and monitoring deficiencies, this research not only contributes to the progression of pavement maintenance practices but also establishes a solid foundation for creating a maintenance and repair priority map. This serves as a valuable tool for targeting interventions, enhancing the longevity and overall performance of flexible pavements, and represents a significant advancement in sustainable infrastructure management.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 9th Brazilian Technology Symposium (BTSym’23) - Emerging Trends and Challenges in Technology
EditoresYuzo Iano, Rangel Arthur, Osamu Saotome, Guillermo Leopoldo Kemper Vásquez, Maria Thereza de Moraes Gomes Rosa, Gabriel Gomes de Oliveira
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas195-205
Número de páginas11
ISBN (versión impresa)9783031669606
DOI
EstadoPublicada - 2024
Evento9th Brazilian Technology Symposium on Emerging Trends and Challenges in Technology, BTSym 2023 - Campinas, Brasil
Duración: 24 oct. 202326 oct. 2023

Serie de la publicación

NombreSmart Innovation, Systems and Technologies
Volumen402 SIST
ISSN (versión impresa)2190-3018
ISSN (versión digital)2190-3026

Conferencia

Conferencia9th Brazilian Technology Symposium on Emerging Trends and Challenges in Technology, BTSym 2023
País/TerritorioBrasil
CiudadCampinas
Período24/10/2326/10/23

Huella

Profundice en los temas de investigación de 'Application of the Deep Learning Methodology for the Detection of Cracks in Asphalt Roads'. En conjunto forman una huella única.

Citar esto