Artificial neural networks to estimate the forecast of tourism demand in Peru

Rogelio Ramos-Carrasco, Shirley Galvez-Diaz, Victor Nunez-Ponce, Jose Alvarez-Merino

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

9 Citas (Scopus)

Resumen

Service companies, for the most part, do not have physical inventories that allow them to cushion demand variability. The high logistics costs of each process of the company are the reflection of these differences in the forecast. For this reason, having a successful demand forecast will generate a competitive advantage in companies that take these processes with interest. In the present work it is possible to estimate the amount of tourist packages that will be sold in the next three months using ANN (artificial neural networks) that present a decrease in the error of the current situation of 9.89% which, together with a forecast management system of adequate demand, it was thus possible to reduce the logistics costs of the services company by up to 33%.

Idioma originalInglés
Título de la publicación alojadaSHIRCON 2019 - 2019 IEEE Sciences and Humanities International Research Conference
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781728138183
DOI
EstadoPublicada - nov. 2019
Evento2019 IEEE Sciences and Humanities International Research Conference, SHIRCON 2019 - Lima, Perú
Duración: 13 nov. 201915 nov. 2019

Serie de la publicación

NombreSHIRCON 2019 - 2019 IEEE Sciences and Humanities International Research Conference

Conferencia

Conferencia2019 IEEE Sciences and Humanities International Research Conference, SHIRCON 2019
País/TerritorioPerú
CiudadLima
Período13/11/1915/11/19

Huella

Profundice en los temas de investigación de 'Artificial neural networks to estimate the forecast of tourism demand in Peru'. En conjunto forman una huella única.

Citar esto