AutoPose: Pose Estimation for Prevention of Musculoskeletal Disorders Using LSTM

Francesco Bassino-Riglos, Cesar Mosqueira-Chacon, Willy Ugarte

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

Office work has become the most prevalent occupation in contemporary society, necessitating long hours of sedentary behavior that can lead to mental and physical fatigue, including the risk of developing musculoskeletal disorders (MSDs). To address this issue, we have proposed an innovative system that utilizes the NAO robot for posture alerts and camera for image capture, YoloV7 for landmark extraction, and an LSTM recurrent network for posture prediction. Although our model has shown promise, further improvements can be made, particularly by enhancing the dataset’s robustness. With a more comprehensive and diverse dataset, we anticipate a significant enhancement in the model’s performance. In our evaluation, the model achieved an accuracy of 67%, precision of 44%, recall of 67%, and an F1 score of 53%. These metrics provide valuable insights into the system’s effectiveness and highlight the areas where further refinements can be implemented. By refining the model and leveraging a more extensive dataset, we aim to enhance the accuracy and precision of bad posture detection, thereby empowering office workers to adopt healthier postural habits and reduce the risk of developing MSDs.

Idioma originalInglés
Título de la publicación alojadaInnovative Intelligent Industrial Production and Logistics - 4th International Conference, IN4PL 2023, Proceedings
EditoresSergio Terzi, Kurosh Madani, Oleg Gusikhin, Hervé Panetto
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas223-238
Número de páginas16
ISBN (versión impresa)9783031493386
DOI
EstadoPublicada - 2023
Evento4th International Conference on Innovative Intelligent Industrial Production and Logistics, IN4PL 2023 - Rome, Italia
Duración: 15 nov. 202317 nov. 2023

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1886 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia4th International Conference on Innovative Intelligent Industrial Production and Logistics, IN4PL 2023
País/TerritorioItalia
CiudadRome
Período15/11/2317/11/23

Huella

Profundice en los temas de investigación de 'AutoPose: Pose Estimation for Prevention of Musculoskeletal Disorders Using LSTM'. En conjunto forman una huella única.

Citar esto