CEO - A combined expansion and orthogonalization method

Y. Halevi, C. A. Morales, D. J. Inman

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Most model updating and error localization methods require a set of full length, orthogonal eigenvectors. In practice, the number of measurements is less than the order of the model, and hence modeshape expansion, i.e. adding the unmeasured degrees of freedom, is required. This step is then followed by orthogonalization with respect to the mass matrix. Most current methods use two separate steps for expansion and orthogonalization, each one optimal by itself, but their combination is not optimal. The paper describes a method of Combined Expansion and Orthogonalization (CEO) that combines the two steps into one optimization problem. In case of equal number of analytical and experimental modeshapes the problem coincides with the Procrustes problem and has a closed form solution. Otherwise the solution involves nonlinear equations. Several examples show the advantage of CEO, especially in cases where the measurements are limited either in number or in space, i.e. not spanned through the entire structure.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 2004 International Conference on Noise and Vibration Engineering, ISMA
EditoresP. Sas, M. Munck
Páginas1833-1846
Número de páginas14
EstadoPublicada - 2004
Publicado de forma externa
EventoProceedings of the 2004 International Conference on Noise and Vibration Engineering, ISMA - Leuven, Bélgica
Duración: 20 set. 200422 set. 2004

Serie de la publicación

NombreProceedings of the 2004 International Conference on Noise and Vibration Engineering, ISMA

Conferencia

ConferenciaProceedings of the 2004 International Conference on Noise and Vibration Engineering, ISMA
País/TerritorioBélgica
CiudadLeuven
Período20/09/0422/09/04

Huella

Profundice en los temas de investigación de 'CEO - A combined expansion and orthogonalization method'. En conjunto forman una huella única.

Citar esto