Constraint Programming for the Pandemic in Peru

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Currently, the world requires techniques that match infected people and hospital beds together given various criteria such as the severity of infection, patient location, hospital capacity, etc. Deep Learning might seems to be a perfect fit for this: various configurations from a broad range of parameters that need to be reduced to a few solutions. But, this models require to be trained, hence the need for historical data on previous cases leading to a waste of time would in cleaning and consolidating a dataset and lengthy training sessions need to be performed with a variety of architectures. Nevertheless, formulating this problem as a Constraint Satisfaction Problem (CSP), the aforementioned downsides will not be present while still optimal results, and without the need for any historical data. In this paper, a CSP model is used to search for the best distribution of COVID-19 patients with a severity of patients requiring hospitalization and patients requiring ICU beds, in hospitals in a part of Lima.

Idioma originalInglés
Título de la publicación alojadaApplied Technologies - Second International Conference, ICAT 2020, Proceedings
EditoresMiguel Botto-Tobar, Sergio Montes León, Oscar Camacho, Danilo Chávez, Pablo Torres-Carrión, Marcelo Zambrano Vizuete
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas299-311
Número de páginas13
ISBN (versión impresa)9783030715021
DOI
EstadoPublicada - 2021
Evento2nd International Conference on Applied Technologies, ICAT 2020 - Virtual, Online
Duración: 2 dic. 20204 dic. 2020

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1388 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia2nd International Conference on Applied Technologies, ICAT 2020
CiudadVirtual, Online
Período2/12/204/12/20

Huella

Profundice en los temas de investigación de 'Constraint Programming for the Pandemic in Peru'. En conjunto forman una huella única.

Citar esto