Content-Based Image Classification for Sheet Music Books Recognition

Diego Jesus Lozano-Mejia, Enrique Paul Vega-Uribe, Willy Ugarte

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

13 Citas (Scopus)

Resumen

Modern digital music libraries have grown to contain a very large number of musical representation and retrieving images from them may be difficult for people with no prior experience. This study presents a comparison of several convolutional neural networks (CNN) architectures performance on music sheet classification, which are state-of-The-Art computer vision methods to perform classification tasks. The models were trained using randomly selected sheets from different sheet music books and used to classify the source book of the validation data. To evaluate the models with incomplete images, we divide each image of our dataset in nine equal parts, then test the models with them. Performance evaluation of the CNNs prove that they can be very effective in this task.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781728183671
DOI
EstadoPublicada - 21 oct. 2020
Evento2020 IEEE Engineering International Research Conference, EIRCON 2020 - Lima, Perú
Duración: 21 oct. 202023 oct. 2020

Serie de la publicación

NombreProceedings of the 2020 IEEE Engineering International Research Conference, EIRCON 2020

Conferencia

Conferencia2020 IEEE Engineering International Research Conference, EIRCON 2020
País/TerritorioPerú
CiudadLima
Período21/10/2023/10/20

Huella

Profundice en los temas de investigación de 'Content-Based Image Classification for Sheet Music Books Recognition'. En conjunto forman una huella única.

Citar esto