Detection of diabetic retinopathy based on a convolutional neural network using retinal fundus images

Gabriel García, Jhair Gallardo, Antoni Mauricio, Jorge López, Christian Del Carpio

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

86 Citas (Scopus)

Resumen

Diabetic retinopathy is one of the leading causes of blindness. Its damage is associated with the deterioration of blood vessels in retina. Progression of visual impairment may be cushioned or prevented if detected early, but diabetic retinopathy does not present symptoms prior to progressive loss of vision, and its late detection results in irreversible damages. Manual diagnosis is performed on retinal fundus images and requires experienced clinicians to detect and quantify the importance of several small details which makes this an exhaustive and time-consuming task. In this work, we attempt to develop a computer-assisted tool to classify medical images of the retina in order to diagnose diabetic retinopathy quickly and accurately. A neural network, with CNN architecture, identifies exudates, micro-aneurysms and hemorrhages in the retina image, by training with labeled samples provided by EyePACS, a free platform for retinopathy detection. The database consists of 35126 high-resolution retinal images taken under a variety of conditions. After training, the network shows a specificity of 93.65% and an accuracy of 83.68% on validation process.

Idioma originalInglés
Título de la publicación alojadaArtificial Neural Networks and Machine Learning – ICANN 2017 - 26th International Conference on Artificial Neural Networks, Proceedings
EditoresAlessandra Lintas, Alessandro E. Villa, Stefano Rovetta, Paul F. Verschure
EditorialSpringer Verlag
Páginas635-642
Número de páginas8
ISBN (versión impresa)9783319686110
DOI
EstadoPublicada - 2017
Publicado de forma externa
Evento26th International Conference on Artificial Neural Networks, ICANN 2017 - Alghero, Italia
Duración: 11 set. 201714 set. 2017

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen10614 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia26th International Conference on Artificial Neural Networks, ICANN 2017
País/TerritorioItalia
CiudadAlghero
Período11/09/1714/09/17

Huella

Profundice en los temas de investigación de 'Detection of diabetic retinopathy based on a convolutional neural network using retinal fundus images'. En conjunto forman una huella única.

Citar esto