Development of 1D-CNN Methods for Classifying Pediatric Epilepsy Through EEG Signals

Oscar Flores-Palermo, Christian Espiritu-Cueva, Willy Ugarte

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Our work focuses on the development of a method that allows high-precision classification of ictal and preictal seizure activity in pediatric patients by analyzing EEG signals. In this study, different methods are analyzed using the CHB-MIT dataset, applying various preprocessing techniques and 1D-CNN model architectures. This paper compares two data acquisition methods identified during the experimentation process, namely training a 1D-CNN + LSTM model with single channel data (one channel per second) and multi-channel data (23 channels per second). The results showed that the multi-channel methodology outperformed its counterpart, achieving sensitivity, specificity, precision, accuracy and F1 score of 94.05%, 85.90%, 87.73%, 90.12% and 90.79%, respectively.

Idioma originalInglés
Título de la publicación alojadaInformation Management and Big Data - 11th Annual International Conference, SIMBig 2024, Proceedings
EditoresJuan Antonio Lossio-Ventura, Eduardo Ceh-Varela, Eduardo Díaz, Freddy Paz Espinoza, Claude Tadonki, Hugo Alatrista-Salas
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas401-415
Número de páginas15
ISBN (versión impresa)9783031914270
DOI
EstadoPublicada - 2025
Evento11th Annual International Conference on Information Management and Big Data, SIMBig 2024 - Ilo, Perú
Duración: 20 nov. 202422 nov. 2024

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen2496 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia11th Annual International Conference on Information Management and Big Data, SIMBig 2024
País/TerritorioPerú
CiudadIlo
Período20/11/2422/11/24

Huella

Profundice en los temas de investigación de 'Development of 1D-CNN Methods for Classifying Pediatric Epilepsy Through EEG Signals'. En conjunto forman una huella única.

Citar esto