F-Detector: Design of a Solution Based on Machine Learning to Detect Logical Fallacias on Digital Texts

Diego Atarama, Diego Pereira, Cesar Salas

Producción científica: Contribución a una revistaArtículo de la conferenciarevisión exhaustiva

Resumen

The design of F-Detector, as an improved Machine Learning-based solution aimed at detecting logical fallacies in digital texts. Using an advanced NLP approach based on BERT, enhances the classification of text fragments into various categories of logical fallacies by incorporating more robust linguistic features and a more accurate classification model. The performance of F-Detector was rigorously evaluated using multiple metrics, demonstrating an overall precision of 75%, significantly improving upon the 18% precision achieved by previous solutions. Additionally, this model will be integrated into a Chrome extension, allowing users, including educators, researchers, and the general public, to utilize it in a natural way. This enhanced tool has the potential for broad application in education and digital content analysis, contributing to better discourse quality and more effective misinformation detection.

Idioma originalInglés
Páginas (desde-hasta)216-221
Número de páginas6
PublicaciónProceedings of the International Conference on Soft Computing and Machine Intelligence, ISCMI
N.º2024
DOI
EstadoPublicada - 2024
Evento11th International Conference on Soft Computing and Machine Intelligence, ISCMI 2024 - Melbourne, Australia
Duración: 22 nov. 202423 nov. 2024

Huella

Profundice en los temas de investigación de 'F-Detector: Design of a Solution Based on Machine Learning to Detect Logical Fallacias on Digital Texts'. En conjunto forman una huella única.

Citar esto