TY - GEN
T1 - Improvement of the shear strength parameters of an expansive soil using recycled glass powder and polypropylene fibers
AU - MacHuca, Joao Rodriguez
AU - Pusari Quispe, Oscar
AU - Ramirez, Gary Duran
AU - Fernandez Diaz, Carlos
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/9/30
Y1 - 2020/9/30
N2 - In this article, the geotechnical behavior of the reinforced soil is studied through additions of polypropylene fiber and recycled glass powder, this in order to obtain a homogeneously reinforced soil matrix to reduce possible structural failures, differential settlements and increase capacity bearing. The sample used was classified as a clay soil with low plasticity (CL) and with moderately expansive characteristics, based on the values of the Liquid Limit, Plastic Limit and Plasticity Index. The effect of the 1% polypropylene fiber and different amounts of recycled glass powder (0%, 4%, 5%, 6.5%), with respect to dry weight is analyzed in this soil. The purpose of varying the quantity of these materials is to find a trend of the strength parameters and obtain the optimal percentages that provides improvements in geotechnical behavior. Modified Proctor and Direct Shear tests were carried out, this latter to obtain the shear strength parameters of the mixtures and compare them with the clay soil. Finally, the optimal result for soil improvement was the mixture made by 1% polypropylene fiber and 4% glass powder, which achieved an increase of the angle of friction and cohesion.
AB - In this article, the geotechnical behavior of the reinforced soil is studied through additions of polypropylene fiber and recycled glass powder, this in order to obtain a homogeneously reinforced soil matrix to reduce possible structural failures, differential settlements and increase capacity bearing. The sample used was classified as a clay soil with low plasticity (CL) and with moderately expansive characteristics, based on the values of the Liquid Limit, Plastic Limit and Plasticity Index. The effect of the 1% polypropylene fiber and different amounts of recycled glass powder (0%, 4%, 5%, 6.5%), with respect to dry weight is analyzed in this soil. The purpose of varying the quantity of these materials is to find a trend of the strength parameters and obtain the optimal percentages that provides improvements in geotechnical behavior. Modified Proctor and Direct Shear tests were carried out, this latter to obtain the shear strength parameters of the mixtures and compare them with the clay soil. Finally, the optimal result for soil improvement was the mixture made by 1% polypropylene fiber and 4% glass powder, which achieved an increase of the angle of friction and cohesion.
KW - expansive clays
KW - Polypropylene fiber
KW - recycled glass powder
KW - shear strength
UR - https://www.scopus.com/pages/publications/85096591180
U2 - 10.1109/CONIITI51147.2020.9240273
DO - 10.1109/CONIITI51147.2020.9240273
M3 - Contribución a la conferencia
AN - SCOPUS:85096591180
T3 - 2020 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2020 - Conference Proceedings
BT - 2020 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2020 - Conference Proceedings
A2 - Martinez, Monica Andrea Rico
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2020 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2020 - 2020 International Conference on Innovation and Trends in Engineering, CONIITI 2020
Y2 - 30 September 2020 through 2 October 2020
ER -