Indicators for Smart Cities: Tax Illicit Analysis Through Data Mining

Jesús Silva, Darwin Solano, Claudia Fernández, Lainet Nieto Ramos, Rosella Urdanegui, Jeannette Herz, Alberto Mercado, David Ovallos-Gazabon

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

The anomalies in the data coexist in the databases and in the non-traditional data that can be accessed and produced by a tax administration, whether these data are of internal or external origin. The analysis of certain anomalies in the data could lead to the discovery of patterns that respond to different causes, being able to evidence these causes certain illicit by taxpayers or acts of corruption when there is the connivance of the taxpayer with the public employee or public official. The purpose of this research is the theoretical development of the causal analysis of certain anomalies of tax data, demonstrating that the data mining methodology contributes to evidence of illicit and corrupt acts, through the application of certain algorithms.

Idioma originalInglés
Título de la publicación alojadaProceedings of International Conference on Recent Trends in Machine Learning, IoT, Smart Cities and Applications, ICMISC 2020
EditoresVinit Kumar Gunjan, Jacek M. Zurada
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas929-937
Número de páginas9
ISBN (versión impresa)9789811572333
DOI
EstadoPublicada - 2021
Publicado de forma externa
EventoInternational Conference on Recent Trends in Machine Learning, IOT, Smart Cities and Applications, ICMISC 2020 - Hyderabad, India
Duración: 29 mar. 202030 mar. 2020

Serie de la publicación

NombreAdvances in Intelligent Systems and Computing
Volumen1245
ISSN (versión impresa)2194-5357
ISSN (versión digital)2194-5365

Conferencia

ConferenciaInternational Conference on Recent Trends in Machine Learning, IOT, Smart Cities and Applications, ICMISC 2020
País/TerritorioIndia
CiudadHyderabad
Período29/03/2030/03/20

Huella

Profundice en los temas de investigación de 'Indicators for Smart Cities: Tax Illicit Analysis Through Data Mining'. En conjunto forman una huella única.

Citar esto