Intelligent System Comparing Clustering Algorithms to Recommend Sales Strategies

Gianella Arévalo-Huaman, Jose Vallejos-Huaman, Daniel Burga-Durango

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

The context of the pandemic has accelerated the growth of electronic commerce in recent years. Consequently, there is intense competition among companies to boost sales and achieve success in a market environment where the failure rate stands at 80%. Motivated by this reason, an Intelligent System is proposed to recommend a sales campaign strategy within an e-commerce platform, automating the analysis of customer data by employing machine learning algorithms to segment (K-means) customers into groups based on their information. Additionally, the system recommends (Decision Tree) a specific sales strategy for each group. Therefore, the objective of this study is to analyze all the relevant aspects that arise in the relationship between an e-commerce business and its customers, as well as the effectiveness of generating strategies based on specific groups through Customer Segmentation. As a result, the system achieved a significant increase in Web Traffic, Click-through Rate, and Sales Revenue by 14%, 5%, and 10%, respectively, indicating a monetary growth and improved engagement after the utilization of our tool.

Idioma originalInglés
Título de la publicación alojadaAdvanced Research in Technologies, Information, Innovation and Sustainability - 3rd International Conference, ARTIIS 2023, Proceedings
EditoresTeresa Guarda, Filipe Portela, Jose Maria Diaz-Nafria
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas209-219
Número de páginas11
ISBN (versión impresa)9783031488573
DOI
EstadoPublicada - 2024
Evento3rd International Conference on Advanced Research in Technologies, Information, Innovation and Sustainability, ARTIIS 2023 - Madrid, Espana
Duración: 18 oct. 202320 oct. 2023

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1935 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia3rd International Conference on Advanced Research in Technologies, Information, Innovation and Sustainability, ARTIIS 2023
País/TerritorioEspana
CiudadMadrid
Período18/10/2320/10/23

Huella

Profundice en los temas de investigación de 'Intelligent System Comparing Clustering Algorithms to Recommend Sales Strategies'. En conjunto forman una huella única.

Citar esto