TY - JOUR
T1 - Low Permeability Concrete for Buildings Located in Marine Atmosphere Zone using Clay Brick Powder
AU - Castillo, M.
AU - Hernández, K.
AU - Rodriguez, J.
AU - Eyzaguirre, C.
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2020/2/28
Y1 - 2020/2/28
N2 - The concrete is not one hundred percent impermeable since the water that remains inside it causes its corrosion, in the case of reinforced concrete, exposed in an area of marine atmosphere, the sea salt mostly present in large particles of the marine spray, produce the reduction of the alkalinity of the concrete causing a rapid corrosion of the steel. There are buildings built in this marine area that have been designed without durability criteria, in which the use of pozzolanic materials is considered, for example, to fill the pores of the cement matrix and thus guarantee its impermeability. In the present study, the effect of clay brick powder (PLA) as a replacement for cement in concrete manufacturing is addressed, evaluating different characteristics of its components. The results indicate that pozzolanic activity and compressive strength increase, slump, voids content and the coefficient of permeability to water decreases.
AB - The concrete is not one hundred percent impermeable since the water that remains inside it causes its corrosion, in the case of reinforced concrete, exposed in an area of marine atmosphere, the sea salt mostly present in large particles of the marine spray, produce the reduction of the alkalinity of the concrete causing a rapid corrosion of the steel. There are buildings built in this marine area that have been designed without durability criteria, in which the use of pozzolanic materials is considered, for example, to fill the pores of the cement matrix and thus guarantee its impermeability. In the present study, the effect of clay brick powder (PLA) as a replacement for cement in concrete manufacturing is addressed, evaluating different characteristics of its components. The results indicate that pozzolanic activity and compressive strength increase, slump, voids content and the coefficient of permeability to water decreases.
UR - https://www.scopus.com/pages/publications/85082133838
U2 - 10.1088/1757-899X/758/1/012093
DO - 10.1088/1757-899X/758/1/012093
M3 - Artículo de la conferencia
AN - SCOPUS:85082133838
SN - 1757-8981
VL - 758
JO - IOP Conference Series: Materials Science and Engineering
JF - IOP Conference Series: Materials Science and Engineering
IS - 1
M1 - 012093
T2 - 2019 7th International Conference on Mechanical Engineering, Materials Science and Civil Engineering, ICMEMSCE 2019
Y2 - 17 December 2019 through 18 December 2019
ER -