Método de Predicción de Estallido de Roca en Minería Subterránea de Gran Profundidad basado en Extreme Learning Machine

Sebastian Pastor-Villanueva, Humberto Pehovaz-Alvarez, Carlos Raymundo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

In great depth underground mining the stress accumulation in the rockmass leads to a condition known as Rockburst. Until now, no detection method has proven to be successful enough in detecting rockburst events. Because of that, a software has been developed in order to predict the probability of rockburst using as data entry the in-situ stress condition and geomechanics properties of the rockmass. This software is based on Extreme Learning Machine, a single perceptron feedforward Neuronal Network that uses random projection. The foreseen result is a detection of 90% of cases and an 85% of effectivity of rockburst quality prediction. The database has Acoustic Emission readings of different great depth mines around the globe.

Título traducido de la contribuciónRockburst Prediction in Great Depth Underground Mining based on Extreme Learning Machine
Idioma originalEspañol
Título de la publicación alojada19th LACCEI International Multi-Conference for Engineering, Education Caribbean Conference for Engineering and Technology
Subtítulo de la publicación alojada"Prospective and Trends in Technology and Skills for Sustainable Social Development" and "Leveraging Emerging Technologies to Construct the Future", LACCEI 2021 - Proceedings
EditoresMaria M. Larrondo Petrie, Luis Felipe Zapata Rivera, Catalina Aranzazu-Suescun
EditorialLatin American and Caribbean Consortium of Engineering Institutions
ISBN (versión digital)9789585207189
DOI
EstadoPublicada - 2021
Evento19th LACCEI International Multi-Conference for Engineering, Education Caribbean Conference for Engineering and Technology: "Prospective and Trends in Technology and Skills for Sustainable Social Development" and "Leveraging Emerging Technologies to Construct the Future", LACCEI 2021 - Virtual, Online
Duración: 19 jul. 202123 jul. 2021

Serie de la publicación

NombreProceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
Volumen2021-July
ISSN (versión digital)2414-6390

Conferencia

Conferencia19th LACCEI International Multi-Conference for Engineering, Education Caribbean Conference for Engineering and Technology: "Prospective and Trends in Technology and Skills for Sustainable Social Development" and "Leveraging Emerging Technologies to Construct the Future", LACCEI 2021
CiudadVirtual, Online
Período19/07/2123/07/21

Palabras clave

  • Deep underground mining
  • Extreme learning machine
  • Neural network
  • Rockburst

Huella

Profundice en los temas de investigación de 'Método de Predicción de Estallido de Roca en Minería Subterránea de Gran Profundidad basado en Extreme Learning Machine'. En conjunto forman una huella única.

Citar esto