MAS4Games: A Reinforced Learning-Based Multi-agent System to Improve Player Retention in Virtual Reality Video Games

Natalia Maury-Castañeda, Sergio Villarruel-Vasquez, Willy Ugarte

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

In this paper, we present a Q-learning-based multi-agent system designed for Dynamic Difficulty Adjustment (DDA) in a 3D fighting game. Our primary goal is to enhance the player’s gaming experience through dynamic game difficulty adjustments based on their performance. We leverage the Unity game development platform and the ML-Agents framework to implement the Q-learning algorithm, training intelligent agents to adapt the game’s difficulty. Our findings underscore the efficacy of Q-learning and multi-agent systems in improving DDA for video games. In the conclusion section, we discuss potential implications and future directions for our research.

Idioma originalInglés
Título de la publicación alojadaComputer-Human Interaction Research and Applications - 7th International Conference, CHIRA 2023, Proceedings
EditoresHugo Plácido da Silva, Hugo Plácido da Silva, Pietro Cipresso
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas104-120
Número de páginas17
ISBN (versión impresa)9783031493676
DOI
EstadoPublicada - 2023
Evento7th International Conference on Computer-Human Interaction Research and Applications, CHIRA 2023 - Rome, Italia
Duración: 16 nov. 202317 nov. 2023

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1997 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia7th International Conference on Computer-Human Interaction Research and Applications, CHIRA 2023
País/TerritorioItalia
CiudadRome
Período16/11/2317/11/23

Huella

Profundice en los temas de investigación de 'MAS4Games: A Reinforced Learning-Based Multi-agent System to Improve Player Retention in Virtual Reality Video Games'. En conjunto forman una huella única.

Citar esto