TY - JOUR
T1 - Mechanical Properties of an Eco-friendly Concrete with partial replacement of POC and Rubber
AU - Espinoza, A.
AU - Jiménez, B.
AU - Rodríguez, J.
AU - Eyzaguirre, C.
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2020/2/28
Y1 - 2020/2/28
N2 - Concrete plants consume 10 billion tons of natural aggregates annually from quarries and gravel plants for produce concrete, this demand requires exploiting natural resources from mountains and rivers producing an ecological imbalance. One solution is to use Palm Oil Clinker (POC), which is eliminated in large quantities in the dumps and rivers without taking advantage of its puzolanic, binding and resistance properties as an aggregate in the concrete; another alternative is to apply rubber from abandoned and discarded tires as waste in landfills or burned, without taking advantage of its performance of improvement in concrete, increasing its resistance to impact and fatigue. Unable to find joint POC and rubber information, this research studies its influence replacing 2.5% rubber (grained and crushed) with 10%, 12.5% and 15% POC in the fine aggregate on traditional concrete; results indicate that with 12.5% of POC as the ideal percentage, the compressive strength, tensile strength and flexural strength rise between 2.16 - 9.54%, so the concrete obtained has a cost of less than 4.09% and has 3.65% less CO2 emission.
AB - Concrete plants consume 10 billion tons of natural aggregates annually from quarries and gravel plants for produce concrete, this demand requires exploiting natural resources from mountains and rivers producing an ecological imbalance. One solution is to use Palm Oil Clinker (POC), which is eliminated in large quantities in the dumps and rivers without taking advantage of its puzolanic, binding and resistance properties as an aggregate in the concrete; another alternative is to apply rubber from abandoned and discarded tires as waste in landfills or burned, without taking advantage of its performance of improvement in concrete, increasing its resistance to impact and fatigue. Unable to find joint POC and rubber information, this research studies its influence replacing 2.5% rubber (grained and crushed) with 10%, 12.5% and 15% POC in the fine aggregate on traditional concrete; results indicate that with 12.5% of POC as the ideal percentage, the compressive strength, tensile strength and flexural strength rise between 2.16 - 9.54%, so the concrete obtained has a cost of less than 4.09% and has 3.65% less CO2 emission.
UR - https://www.scopus.com/pages/publications/85082109180
U2 - 10.1088/1757-899X/758/1/012011
DO - 10.1088/1757-899X/758/1/012011
M3 - Artículo de la conferencia
AN - SCOPUS:85082109180
SN - 1757-8981
VL - 758
JO - IOP Conference Series: Materials Science and Engineering
JF - IOP Conference Series: Materials Science and Engineering
IS - 1
M1 - 012011
T2 - 2019 7th International Conference on Mechanical Engineering, Materials Science and Civil Engineering, ICMEMSCE 2019
Y2 - 17 December 2019 through 18 December 2019
ER -