Mobile Application for Optimizing Exercise Posture Through Machine Learning and Computer Vision in Gyms

Kendall Contreras-Salazar, Paulo Costa-Mondragon, Willy Ugarte

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

This paper introduces a mobile application that aims to improve exercise posture analysis in gym environments using machine learning and computer vision. The solution processes user-uploaded videos to detect posture errors, utilizing Long Short-Term Memory (LSTM) networks and MediaPipe for precise pose estimation. The trained model achieved high accuracy in classifying exercise postures, demonstrating reliable performance across different user scenarios. Traditional posture correction methods, such as personal trainers and wearable devices, often lack accessibility and precision. In contrast, our application offers a scalable, user-friendly tool that delivers actionable feedback, helping users optimize their workouts and reduce injury risks. The study highlights the potential of combining machine learning with mobile technology to enhance exercise safety and performance, setting a foundation for future improvements.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 11th International Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE 2025
EditoresEffie Lai-Chong Law, Maria Lozano Perez, Maurice Mulvenna
EditorialScience and Technology Publications, Lda
Páginas360-367
Número de páginas8
ISBN (versión digital)9789897587436
DOI
EstadoPublicada - 2025
Evento11th International Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE 2025 - Porto, Portugal
Duración: 6 abr. 20258 abr. 2025

Serie de la publicación

NombreInternational Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE - Proceedings
ISSN (versión digital)2184-4984

Conferencia

Conferencia11th International Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE 2025
País/TerritorioPortugal
CiudadPorto
Período6/04/258/04/25

Huella

Profundice en los temas de investigación de 'Mobile Application for Optimizing Exercise Posture Through Machine Learning and Computer Vision in Gyms'. En conjunto forman una huella única.

Citar esto