Modelo predictivo para reducir el índice de deserción de estudiantes universitarios en el Perú: Redes Bayesianas vs. Árboles de Decisión

Erik Cevallos Medina, Claudio Barahona Chunga, Jimmy Armas-Aguirre, Elizabeth E. Grandon

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

11 Citas (Scopus)

Resumen

This research proposes a prediction model that might help reducing the dropout rate of university students in Peru. For this, a three-phase predictive analysis model was designed which was combined with the stages proposed by the IBM SPSS Modeler methodology. Bayesian network techniques was compared with decision trees for their level of accuracy over other algorithms in an Educational Data Mining (EDM) scenario. Data were collected from 500 undergraduate students from a private university in Lima. The results indicate that Bayesian networks behave better than decision trees based on metrics of precision, accuracy, specificity, and error rate. Particularly, the accuracy of Bayesian networks reaches 67.10% while the accuracy for decision trees is 61.92% in the training sample for iteration with 8:2 rate. On the other hand, the variables athletic person (0.30%), own house (0.21%), and high school grades (0.13%) are the ones that contribute most to the prediction model for both Bayesian networks and decision trees.

Título traducido de la contribuciónPredictive model to reduce the dropout rate of university students in Perú: Bayesian Networks vs. Decision Trees
Idioma originalEspañol
Título de la publicación alojadaProceedings of CISTI 2020 - 15th Iberian Conference on Information Systems and Technologies
EditoresAlvaro Rocha, Bernabe Escobar Perez, Francisco Garcia Penalvo, Maria del Mar Miras, Ramiro Goncalves
EditorialIEEE Computer Society
ISBN (versión digital)9789895465903
DOI
EstadoPublicada - jun. 2020
Evento15th Iberian Conference on Information Systems and Technologies, CISTI 2020 - Seville, Espana
Duración: 24 jun. 202027 jun. 2020

Serie de la publicación

NombreIberian Conference on Information Systems and Technologies, CISTI
Volumen2020-June
ISSN (versión impresa)2166-0727
ISSN (versión digital)2166-0735

Conferencia

Conferencia15th Iberian Conference on Information Systems and Technologies, CISTI 2020
País/TerritorioEspana
CiudadSeville
Período24/06/2027/06/20

Palabras clave

  • Bayesian Networks
  • Decision Trees
  • Educational Data Mining
  • predictive analysis
  • university dropout

Huella

Profundice en los temas de investigación de 'Modelo predictivo para reducir el índice de deserción de estudiantes universitarios en el Perú: Redes Bayesianas vs. Árboles de Decisión'. En conjunto forman una huella única.

Citar esto