Performance Evaluation of Unsupervised Learning Application for Warren Truss Bridge Anomaly Detection Using MLP Autoencoder

Nicole Maité Ita, Kimberly Caballero, Joan R. Casas, Rick M. Delgadillo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Accurate detection of structural anomalies in bridges is crucial due to the variety of deteriorations that can compromise their safety. Traditional visual inspection methods are subjective and can miss incipient damage. This study proposes a methodology to evaluate the performance of a model based on unsupervised learning for bridge anomaly detection. Real acceleration data from a Warren truss-type steel bridge are used, which are pre-processed through standardization (mean zero and standard deviation one) and normalization (scaling the data between −1 and 1) and are divided into sequences of 5 s with a 200 Hz sampling rate to adequately capture temporal variations. An MLP Autoencoder with multiple hidden layers is implemented, using cross validation (KFold), Adam optimizer and mean square error (MSE) loss for training. The performance evaluation includes visualizations with PCA (Principal Component Analysis) and UMAP (Uniform Manifold Approximation and Projection), clustering with K-means, and analysis of reconstruction errors, calculating metrics such as precision, recall and F1-score, and presenting the confusion matrix. The results showed validation errors between 0.029 and 0.047, indicating moderate consistency of the model. Principal component analysis and UMAP revealed clear structures in the data, while K-Means clustering identified five distinct clusters. The model achieved an overall accuracy of 62.50%, with 76% for the majority class. This methodology provides a basis for the automated characterization of structural vibration patterns, contributing to the development of more sensitive and efficient monitoring systems for the early detection of bridge anomalies.

Idioma originalInglés
Título de la publicación alojadaExperimental Vibration Analysis for Civil Engineering Structures, EVACES 2025 - Volume 1
EditoresÁlvaro Cunha, Elsa Caetano
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas843-851
Número de páginas9
ISBN (versión impresa)9783031961090
DOI
EstadoPublicada - 2025
Evento11th International Conference on Experimental Vibration Analysis for Civil Engineering Structures, EVACES 2025 - Porto, Portugal
Duración: 2 jul. 20254 jul. 2025

Serie de la publicación

NombreLecture Notes in Civil Engineering
Volumen674 LNCE
ISSN (versión impresa)2366-2557
ISSN (versión digital)2366-2565

Conferencia

Conferencia11th International Conference on Experimental Vibration Analysis for Civil Engineering Structures, EVACES 2025
País/TerritorioPortugal
CiudadPorto
Período2/07/254/07/25

Huella

Profundice en los temas de investigación de 'Performance Evaluation of Unsupervised Learning Application for Warren Truss Bridge Anomaly Detection Using MLP Autoencoder'. En conjunto forman una huella única.

Citar esto