PhotoRestorer: Restoration of Old or Damaged Portraits with Deep Learning

Christopher Mendoza-Dávila, David Porta-Montes, Willy Ugarte

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Several studies have proposed different image restoration techniques, however most of them focus on restoring a single type of damage or, if they restore different types of damage, their results are not very good or have a long execution time, since they have a large margin for improvement. Therefore, we propose the creation of a convolutional neural network (CNN) to classify the type of damage of an image and, accordingly, use pretrained models to restore that type of damage. For the classifier we use the transfer learning technique using the Inception V3 model as the basis of our architecture. To train our classifier, we used the FFHQ dataset, which is a dataset of people's faces, and using masks and functions, added different types of damage to the images. The results show that using a classifier to identify the type of damage in images is a good pre-restore option to reduce execution times and improve restored image results.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 19th International Conference on Web Information Systems and Technologies, WEBIST 2023
EditoresFrancisco Garcia Penalvo, Massimo Marchiori
EditorialScience and Technology Publications, Lda
Páginas104-112
Número de páginas9
ISBN (versión digital)9789897586729
DOI
EstadoPublicada - 2023
Evento19th International Conference on Web Information Systems and Technologies, WEBIST 2023 - Hybrid, Rome, Italia
Duración: 15 nov. 202317 nov. 2023

Serie de la publicación

NombreInternational Conference on Web Information Systems and Technologies, WEBIST - Proceedings
ISSN (versión impresa)2184-3252

Conferencia

Conferencia19th International Conference on Web Information Systems and Technologies, WEBIST 2023
País/TerritorioItalia
CiudadHybrid, Rome
Período15/11/2317/11/23

Huella

Profundice en los temas de investigación de 'PhotoRestorer: Restoration of Old or Damaged Portraits with Deep Learning'. En conjunto forman una huella única.

Citar esto