Predictive Analysis of Student Dropout in Higher Education

Jamile Lopez, Nicolas Lecca, Pedro Castañeda

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

This study presents a predictive model of student dropout in higher education, developed using preprocessing techniques and a Support Vector Machine (SVM) model. A dataset from Tecnológico de Monterrey, which includes demographic, academic and financial information of students, was used. The data preparation process included the cleaning and normalization of key variables, such as gender, academic level and types of scholarships, as well as the elimination of irrelevant columns. Subsequently, the data set was divided into training, validation, and test subsets, following standard predictive modeling practices to ensure accuracy and generalizability of the model. Preliminary results suggest that the SVM model is effective in predicting student dropout risk, providing a basis for the development of more personalized educational interventions.

Idioma originalInglés
Título de la publicación alojadaProceedings of 2024 2nd International Conference on Information Education and Artificial Intelligence, ICIEAI 2024
EditorialAssociation for Computing Machinery, Inc
Páginas303-309
Número de páginas7
ISBN (versión digital)9798400711732
DOI
EstadoPublicada - 8 may. 2025
Evento2024 2nd International Conference on Information Education and Artificial Intelligence, ICIEAI 2024 - Kaifeng, China
Duración: 20 dic. 202422 dic. 2024

Serie de la publicación

NombreProceedings of 2024 2nd International Conference on Information Education and Artificial Intelligence, ICIEAI 2024

Conferencia

Conferencia2024 2nd International Conference on Information Education and Artificial Intelligence, ICIEAI 2024
País/TerritorioChina
CiudadKaifeng
Período20/12/2422/12/24

Huella

Profundice en los temas de investigación de 'Predictive Analysis of Student Dropout in Higher Education'. En conjunto forman una huella única.

Citar esto