Predictive model for the evaluation of credit risk in banking entities based on machine learning

Brenda Haro, Cesar Ortiz, Jimmy Armas

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

In this paper, we propose a technology model of predictive analysis based on machine learning for the evaluation of credit risk. The model allows predicting the credit risk of a person based on the information held by an institution or non-traditional sources when deciding whether to grant a loan. In this context, the financial situation of borrowers and financial institutions is compromised. The complexity of this problem can be simplified using new technologies such as Machine Learning in a Cloud Computing platform. Azure was used as a tool to validate the technological model of predictive analysis and determine the credit risk of a client. The proposed model used the Two-Class Boosted Decision Tree algorithm that gave us a greater AUC of 93% accuracy, this indicator was taken as having greater repercussion in the proof of concept developed because it is wanted to predict more urgently the number of possible applicants who do not comply with the payment of debits.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 4th Brazilian Technology Symposium (BTSym’18) - Emerging Trends and Challenges in Technology
EditoresYuzo Iano, Hermes José Loschi, Rangel Arthur, Osamu Saotome, Vânia Vieira Estrela
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas605-612
Número de páginas8
ISBN (versión impresa)9783030160524
DOI
EstadoPublicada - 2019
Evento4th Brazilian Technology Symposium, BTSym 2018 - Campinas, Brasil
Duración: 23 oct. 201825 oct. 2018

Serie de la publicación

NombreSmart Innovation, Systems and Technologies
Volumen140
ISSN (versión impresa)2190-3018
ISSN (versión digital)2190-3026

Conferencia

Conferencia4th Brazilian Technology Symposium, BTSym 2018
País/TerritorioBrasil
CiudadCampinas
Período23/10/1825/10/18

Huella

Profundice en los temas de investigación de 'Predictive model for the evaluation of credit risk in banking entities based on machine learning'. En conjunto forman una huella única.

Citar esto