Real-Time CNN Based Facial Emotion Recognition Model for a Mobile Serious Game

Carolain Anto-Chavez, Richard Maguiña-Bernuy, Willy Ugarte

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Every year, the increase in human-computer interaction is noticeable. This brings with it the evolution of computer vision to improve this interaction to make it more efficient and effective. This paper presents a CNN-based emotion face recognition model capable to be executed on mobile devices, in real time and with high accuracy. Different models implemented in other research are usually of large sizes, and although they obtained high accuracy, they fail to make predictions in an optimal time, which prevents a fluid interaction with the computer. To improve these, we have implemented a lightweight CNN model trained with the FER-2013 dataset to obtain the prediction of seven basic emotions. Experimentation shows that our model achieves an accuracy of 66.52% in validation, can be stored in a 13.23MB file and achieves an average processing time of 14.39ms and 16.06ms, on a tablet and a phone, respectively.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 10th International Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE 2024
EditoresMaurice Mulvenna, Maria Lozano Perez, Martina Ziefl e
EditorialScience and Technology Publications, Lda
Páginas84-92
Número de páginas9
ISBN (versión digital)9789897587009
DOI
EstadoPublicada - 2024
Evento10th International Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE 2024 - Angers, Francia
Duración: 28 abr. 202430 abr. 2024

Serie de la publicación

NombreInternational Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE - Proceedings
ISSN (versión digital)2184-4984

Conferencia

Conferencia10th International Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE 2024
País/TerritorioFrancia
CiudadAngers
Período28/04/2430/04/24

Huella

Profundice en los temas de investigación de 'Real-Time CNN Based Facial Emotion Recognition Model for a Mobile Serious Game'. En conjunto forman una huella única.

Citar esto