Recurrent Neural Networks for Deception Detection in Videos

Bryan Rodriguez-Meza, Renzo Vargas-Lopez-Lavalle, Willy Ugarte

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

4 Citas (Scopus)

Resumen

Deception detection has always been of subject of interest. After all, determining if a person is telling the truth or not could be detrimental in many real-world cases. Current methods to discern deceptions require expensive equipment that need specialists to read and interpret them. In this article, we carry out an exhaustive comparison between 9 different facial landmark recognition based recurrent deep learning models trained on a recent man-made database used to determine lies, comparing them by accuracy and AUC. We also propose two new metrics that represent the validity of each prediction. The results of a 5-fold cross validation show that out of all the tested models, the Stacked GRU neural model has the highest AUC of.9853 and the highest accuracy of 93.69% between the trained models. Then, a comparison is done between other machine and deep learning methods and our proposed Stacked GRU architecture where the latter surpasses them in the AUC metric. These results indicate that we are not that far away from a future where deception detection could be accessible throughout computers or smart devices.

Idioma originalInglés
Título de la publicación alojadaApplied Technologies - 3rd International Conference, ICAT 2021, Proceedings
EditoresMiguel Botto-Tobar, Sergio Montes León, Pablo Torres-Carrión, Marcelo Zambrano Vizuete, Benjamin Durakovic
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas397-411
Número de páginas15
ISBN (versión impresa)9783031038839
DOI
EstadoPublicada - 2022
Evento3rd International Conference on Applied Technologies, ICAT 2021 - Quito, Ecuador
Duración: 27 oct. 202129 oct. 2021

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1535 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia3rd International Conference on Applied Technologies, ICAT 2021
País/TerritorioEcuador
CiudadQuito
Período27/10/2129/10/21

Huella

Profundice en los temas de investigación de 'Recurrent Neural Networks for Deception Detection in Videos'. En conjunto forman una huella única.

Citar esto