SemIndex: Semantic-aware inverted index

Richard Chbeir, Y. Luo, Joe Tekli, Kokou Yetongnon, Carlos Raymundo Ibañez, Agma J.M. Traina, Caetano Traina, Marc Al Assad

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

12 Citas (Scopus)

Resumen

This paper focuses on the important problem of semanticaware search in textual (structured, semi-structured, NoSQL) databases. This problem has emerged as a required extension of the standard containment keyword based query to meet user needs in textual databases and IR applications. We provide here a new approach, called SemIndex, that extends the standard inverted index by constructing a tight coupling inverted index graph that combines two main resources: a general purpose semantic network, and a standard inverted index on a collection of textual data. We also provide an extended query model and related processing algorithms with the help of SemIndex. To investigate its effectiveness, we set up experiments to test the performance of SemIndex. Preliminary results have demonstrated the effectiveness, scalability and optimality of our approach.

Idioma originalInglés
Páginas (desde-hasta)290-307
Número de páginas18
PublicaciónLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen8716
DOI
EstadoPublicada - 2014

Huella

Profundice en los temas de investigación de 'SemIndex: Semantic-aware inverted index'. En conjunto forman una huella única.

Citar esto