Soft threshold constraints for pattern mining

Willy Ugarte, Patrice Boizumault, Samir Loudni, Bruno Crémilleux

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

6 Citas (Scopus)

Resumen

Constraint-based pattern discovery is at the core of numerous data mining tasks. Patterns are extracted with respect to a given set of constraints (frequency, closedness, size, etc). In practice, many constraints require threshold values whose choice is often arbitrary. This difficulty is even harder when several thresholds are required and have to be combined. Moreover, patterns barely missing a threshold will not be extracted even if they may be relevant. In this paper, by using Constraint Programming we propose a method to integrate soft threshold constraints into the pattern discovery process. We show the relevance and the efficiency of our approach through a case study in chemoinformatics for discovering toxicophores.

Idioma originalInglés
Título de la publicación alojadaDiscovery Science - 15th International Conference, DS 2012, Proceedings
Páginas313-327
Número de páginas15
DOI
EstadoPublicada - 2012
Publicado de forma externa
Evento15th International Conference on Discovery Science, DS 2012 - Lyon, Francia
Duración: 29 oct. 201231 oct. 2012

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen7569 LNAI
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia15th International Conference on Discovery Science, DS 2012
País/TerritorioFrancia
CiudadLyon
Período29/10/1231/10/12

Huella

Profundice en los temas de investigación de 'Soft threshold constraints for pattern mining'. En conjunto forman una huella única.

Citar esto