Static Summarization Using Pearson’s Coefficient and Transfer Learning for Anomaly Detection for Surveillance Videos

Steve Willian Chancolla-Neira, César Ernesto Salinas-Lozano, Willy Ugarte

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Data storage has been a problem as technology advances, there are more devices capable of capturing images, sounds, videos, etc. On the security side, many people choose to use security cameras that are available 24 h a day to capture anomalous events and maintain the security of the area, however, storing all captured videos generates high costs, as well as the prolonged analysis that this type of videos implies. For this reason, we propose a method that allows selecting only the important events captured by a video surveillance camera and then classifying them among the types of most constant criminal acts in Peru.

Idioma originalInglés
Título de la publicación alojadaInformation Management and Big Data - 7th Annual International Conference, SIMBig 2020, Proceedings
EditoresJuan Antonio Lossio-Ventura, Jorge Carlos Valverde-Rebaza, Eduardo Díaz, Hugo Alatrista-Salas
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas279-290
Número de páginas12
ISBN (versión impresa)9783030762278
DOI
EstadoPublicada - 2021
Evento7th Annual International Conference on Information Management and Big Data, SIMBig 2020 - Virtual, Online
Duración: 1 oct. 20203 oct. 2020

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1410 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia7th Annual International Conference on Information Management and Big Data, SIMBig 2020
CiudadVirtual, Online
Período1/10/203/10/20

Huella

Profundice en los temas de investigación de 'Static Summarization Using Pearson’s Coefficient and Transfer Learning for Anomaly Detection for Surveillance Videos'. En conjunto forman una huella única.

Citar esto