Steady Patterns

Willy Ugarte, Alexandre Termier, Miguel Santana

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Skypatterns are an elegant answer to the pattern explosion issue, when a set of measures can be provided. Skypatterns for all possible measure combinations can be explored thanks to recent work on the skypattern cube. However, this leads to too many skypatterns, where it is difficult to quickly identify which ones are more important. First, we introduce a new notion of pattern steadiness which measures the conservation of the skypattern property across the skypattern cube, allowing to see which are the 'most universal' skypatterns. Then, we extended this notion to partitions of the dataset, and show in our experiments that this both allows to discover especially stable skypatterns, and identify interesting differences between the partitions.

Idioma originalInglés
Título de la publicación alojadaProceedings - 16th IEEE International Conference on Data Mining Workshops, ICDMW 2016
EditoresCarlotta Domeniconi, Francesco Gullo, Francesco Bonchi, Francesco Bonchi, Josep Domingo-Ferrer, Ricardo Baeza-Yates, Ricardo Baeza-Yates, Ricardo Baeza-Yates, Zhi-Hua Zhou, Xindong Wu
EditorialIEEE Computer Society
Páginas692-699
Número de páginas8
ISBN (versión digital)9781509054725
DOI
EstadoPublicada - 2 jul. 2016
Publicado de forma externa
Evento16th IEEE International Conference on Data Mining Workshops, ICDMW 2016 - Barcelona, Espana
Duración: 12 dic. 201615 dic. 2016

Serie de la publicación

NombreIEEE International Conference on Data Mining Workshops, ICDMW
Volumen0
ISSN (versión impresa)2375-9232
ISSN (versión digital)2375-9259

Conferencia

Conferencia16th IEEE International Conference on Data Mining Workshops, ICDMW 2016
País/TerritorioEspana
CiudadBarcelona
Período12/12/1615/12/16

Citar esto