T-RAPPI: A Machine Learning Model for the Corredor Metropolitano

Deneb Traverso, Gonzalo Pacheco, Pedro Castañeda

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

The public transportation system in Lima, Peru, faces significant challenges, including bus shortages, long queues, and severe traffic congestion, which diminish service quality. These issues arise from a lack of modern management tools capable of efficiently handling the Metropolitano bus system. This paper introduces T-RAPPI, a predictive model based on Random Forest, developed to estimate bus arrival times at Metropolitano stations. Using historical data on bus arrivals and operational parameters, the model achieved exceptional accuracy, with an R2 score of 0.9998 and a MAPE of 0.0554%, demonstrating its robustness and ability to minimize prediction errors. The implementation of T-RAPPI represents a substantial improvement over existing systems, providing operators with data-driven insights to optimize route planning and bus allocation. Additionally, the model's integration into the mobile application Metropolitano + enhances the commuting experience by offering users real-time bus arrival predictions, reducing uncertainty and wait times. Future extensions of this work could include incorporating real-time traffic and weather data to further enhance prediction accuracy and expanding the model to other transit systems in Lima and beyond.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 11th International Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS 2025
EditoresJeroen Ploeg, Oleg Gusikhin, Karsten Berns
EditorialScience and Technology Publications, Lda
Páginas374-381
Número de páginas8
ISBN (versión digital)9789897587450
DOI
EstadoPublicada - 2025
Evento11th International Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS 2025 - Porto, Portugal
Duración: 2 abr. 20254 abr. 2025

Serie de la publicación

NombreInternational Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS - Proceedings
ISSN (versión digital)2184-495X

Conferencia

Conferencia11th International Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS 2025
País/TerritorioPortugal
CiudadPorto
Período2/04/254/04/25

Huella

Profundice en los temas de investigación de 'T-RAPPI: A Machine Learning Model for the Corredor Metropolitano'. En conjunto forman una huella única.

Citar esto